Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Biomater Sci ; 11(14): 4774-4788, 2023 Jul 12.
Article in English | MEDLINE | ID: covidwho-20245372

ABSTRACT

Lipid-based nanoparticles have made a breakthrough in clinical disease as delivery systems due to their biocompatibility, thermal and long-term stability, high loading ability, simplicity of preparation, inexpensive production costs, and scalable manufacturing production. In particular, during the COVID-19 pandemic, this delivery system served as a vital vaccine component for virus confrontation. To obtain effective drug delivery, lipid-based nanoparticles should reach the desired sites with high efficiency, enter target cells, and release drugs. The structures and compositions of lipid-based nanoparticles can be modified to regulate these behaviors in vivo to enhance the therapeutic effects. Herein, we briefly review the development of lipid-based nanoparticles, from simple self-assembled nanovesicle-structured liposomes to multifunctional lipid nanoparticles. Subsequently, we summarize the strategies that regulate their tissue distribution, cell internalization, and drug release, highlighting the importance of the structural and componential design. We conclude with insights for further research to advance lipid-based nanotechnology.


Subject(s)
COVID-19 , Nanoparticles , Humans , Liposomes , Pandemics , Drug Delivery Systems , Nanoparticles/chemistry , Lipids/chemistry
3.
Biomolecules ; 13(5)2023 05 15.
Article in English | MEDLINE | ID: covidwho-20232245

ABSTRACT

Plant cells release tiny membranous vesicles called extracellular vesicles (EVs), which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. These plant-derived EVs (PDEVs) are safe and easily extractable and have been shown to have therapeutic effects against inflammation, cancer, bacteria, and aging. They have shown promise in preventing or treating colitis, cancer, alcoholic liver disease, and even COVID-19. PDEVs can also be used as natural carriers for small-molecule drugs and nucleic acids through various administration routes such as oral, transdermal, or injection. The unique advantages of PDEVs make them highly competitive in clinical applications and preventive healthcare products in the future. This review covers the latest methods for isolating and characterizing PDEVs, their applications in disease prevention and treatment, and their potential as a new drug carrier, with special attention to their commercial viability and toxicological profile, as the future of nanomedicine therapeutics. This review champions the formation of a new task force specializing in PDEVs to address a global need for rigor and standardization in PDEV research.


Subject(s)
COVID-19 , Extracellular Vesicles , Neoplasms , Humans , COVID-19/metabolism , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Drug Carriers/metabolism , Neoplasms/metabolism
4.
J Control Release ; 359: 97-115, 2023 07.
Article in English | MEDLINE | ID: covidwho-20231090

ABSTRACT

Since the first patent for micro array patches (MAPs) was filed in the 1970s, research on utilising MAPs as a drug delivery system has progressed significantly, evidenced by the transition from the simple 'poke and patch' of solid MAPs to the development of bio responsive systems such as hydrogel-forming and dissolving MAPs. In addition to the extensive research on MAPs for improving transdermal drug delivery, there is a growing interest in using these devices to manage infectious diseases. This is due to the minimally invasive nature of this drug delivery platform which enable patients to self-administer therapeutics without the aid of healthcare professionals. This review aims to provide a critical analysis on the potential utility of MAPs in managing infectious diseases which are still endemic at a global scale. The range of diseases covered in this review include tuberculosis, skin infections, malaria, methicillin-resistant Staphylococcus aureus infections and Covid-19. These diseases exert a considerable socioeconomic burden at a global scale with their impact magnified in low- and middle-income countries (LMICs). Due to the painless and minimally invasive nature of MAPs application, this technology also provides an efficient solution not only for the delivery of therapeutics but also for the administration of vaccine and prophylactic agents that could be used in preventing the spread and outbreak of emerging infections. Furthermore, the ability of MAPs to sample and collect dermal interstitial fluid that is rich in disease-related biomarkers could also open the avenue for MAPs to be utilised as a minimally invasive biosensor for the diagnosis of infectious diseases. The efficacy of MAPs along with the current limitations of such strategies to prevent and treat these infections will be discussed. Lastly, the clinical and translational hurdles associated with MAP technologies will also be critically discussed.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Vaccines , Humans , Administration, Cutaneous , Drug Delivery Systems
6.
Ther Deliv ; 12(9): 631-635, 2021 09.
Article in English | MEDLINE | ID: covidwho-2319943

ABSTRACT

Graphical abstract [Formula: see text].


Subject(s)
Brain Diseases , Nanomedicine , Blood-Brain Barrier , Drug Delivery Systems , Humans
7.
Ther Deliv ; 12(11): 757-774, 2021 11.
Article in English | MEDLINE | ID: covidwho-2319895
8.
Ther Deliv ; 11(9): 541-546, 2020 09.
Article in English | MEDLINE | ID: covidwho-2319552

ABSTRACT

The present industry update covers the period 1-31 May 2020, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature.


Subject(s)
Drug Delivery Systems/trends , Viral Vaccines , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/prevention & control , Device Approval , Drug Industry , Humans , Nanostructures , Viral Vaccines/administration & dosage , Viral Vaccines/pharmacokinetics , Viral Vaccines/supply & distribution
9.
Expert Opin Drug Deliv ; 20(6): 799-814, 2023 06.
Article in English | MEDLINE | ID: covidwho-2317146

ABSTRACT

INTRODUCTION: Microneedle fabrication was conceptualized in the 1970s as devices for painless transdermal drug delivery. The last two decades have seen considerable research and financial investment in this area with SARS-CoV-2 and other vaccines catalyzing their application to in vivo intradermal vaccine delivery. Microneedle arrays have been fabricated in different shapes, geometries, formats, and out of different materials. AREAS COVERED: The recent pandemic has offered microneedle platforms the opportunity to be employed as a vehicle for SARS-CoV-2 vaccine administration. Various modes of vaccination delivery and the potential of microneedle array-based vaccines will be presented, with a specific focus placed on recent SARS-CoV-2 research. The advantages of microneedle-based vaccine administration, in addition to the major hurdles to their en masse implementation, will be examined. EXPERT OPINION: Considering the widely acknowledged disadvantages of current vaccine delivery, such as anxiety, pain, and the requirement for professional administration, a large shift in this research sphere is imminent. The SARS-CoV-2 pandemic has catalyzed the development of alternate vaccination platforms, working to avoid the requirement for mass vaccination centers. As microneedle vaccine patches are transitioning through clinical study phases, research will be required to prepare this technology for a more mass production environment.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Administration, Cutaneous , Drug Delivery Systems , Technology , Needles
10.
Ther Deliv ; 13(3): 141-156, 2022 03.
Article in English | MEDLINE | ID: covidwho-2319897
11.
Viruses ; 14(1)2021 12 27.
Article in English | MEDLINE | ID: covidwho-2307471

ABSTRACT

The COVID-19 pandemic has been a public health issue around the world in the last few years. Currently, there is no specific antiviral treatment to fight the disease. Thus, it is essential to highlight possible prognostic predictors that could identify patients with a high risk of developing complications. Within this framework, miRNA biomolecules play a vital role in the genetic regulation of various genes, principally, those related to the pathophysiology of the disease. Here, we review the interaction of host and viral microRNAs with molecular and cellular elements that could potentiate the main pulmonary, cardiac, renal, circulatory, and neuronal complications in COVID-19 patients. miR-26a, miR-29b, miR-21, miR-372, and miR-2392, among others, have been associated with exacerbation of the inflammatory process, increasing the risk of a cytokine storm. In addition, increased expression of miR-15b, -199a, and -491 are related to the prognosis of the disease, and miR-192 and miR-323a were identified as clinical predictors of mortality in patients admitted to the intensive care unit. Finally, we address miR-29, miR-122, miR-155, and miR-200, among others, as possible therapeutic targets. However, more studies are required to confirm these findings.


Subject(s)
COVID-19 Drug Treatment , COVID-19/diagnosis , MicroRNAs/genetics , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/genetics , Drug Delivery Systems , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Inflammation , MicroRNAs/administration & dosage , Prognosis , RNA, Viral/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
12.
Int J Pharm ; 640: 123018, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2307575

ABSTRACT

Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Delivery Systems
13.
Eur J Pharm Biopharm ; 187: 141-155, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306002

ABSTRACT

Clofazimine, an anti-leprosy drug, has been anticipated for a candidate to treat tuberculosis, cryptosporidiosis, and coronavirus infection, but its low oral bioavailability is considered a reason for its limited activity. In the current study, we have tried to improve the oral bioavailability of clofazimine by several SNEDDS formulations and characterized the absorption behavior from various aspects. Among four SNEDDS formulations prepared, SNEDDS A, prepared with castor oil as an oil component, provided the highest bioavailability (around 61%) and SNEDDS D, prepared with Capryol 90, gave the second highest bioavailability. SNEDDS A formed the finest nanoparticles, which were maintained under gastric and intestinal luminal conditions. The comparison in oral bioavailability between the SNEDDS formulation and its corresponding preformed nanoemulsion suggested that SNEDDS A would efficiently form nanoemulsion in the gastrointestinal tract after oral administration. AUC of mesenteric lymph node concentration was the highest for SNEDDS A, which would be one of the reasons for SNEDDS A to reveal the highest oral bioavailability. A cycloheximide-treated oral absorption study and single-pass perfusion study by utilizing a vascular-luminal perfused small intestine-liver preparation clearly indicated that over 90% of clofazimine absorbed to systemic circulation should be derived from lymphatic transport for both SNEDDS A and D. Furthermore, the fraction of dose absorbed was around 65% for SNEDDS D, but SNEDDS A achieved around 94%, indicating the excellent performance of SNEDDS A.


Subject(s)
Clofazimine , Nanoparticles , Drug Delivery Systems , Solubility , Pharmaceutical Preparations , Administration, Oral , Biological Availability , Nanoparticles/chemistry , Emulsions/chemistry , Particle Size
14.
Adv Sci (Weinh) ; 10(17): e2300552, 2023 06.
Article in English | MEDLINE | ID: covidwho-2305488

ABSTRACT

Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.


Subject(s)
COVID-19 , Extracellular Vesicles , Neoplasms , Humans , Drug Delivery Systems/methods , COVID-19/metabolism , Extracellular Vesicles/metabolism , Neoplasms/drug therapy , Biological Transport
16.
Metallomics ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: covidwho-2276629

ABSTRACT

Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.


Subject(s)
COVID-19/metabolism , Ferritins/chemistry , Ferritins/metabolism , SARS-CoV-2 , Biomarkers/chemistry , Biomarkers/metabolism , Biotechnology , Ceruloplasmin/metabolism , Drug Delivery Systems , Ferritins/genetics , Ferroptosis/physiology , Glycosylation , Homeostasis , Humans , Inflammation/metabolism , Iron/metabolism , Nanotechnology , Neoplasms/diagnosis , Neoplasms/metabolism , Prognosis , Tissue Distribution
17.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2289102

ABSTRACT

Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.


Subject(s)
Chitosan , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Delivery Systems , Drug Carriers , Polymers
18.
J Mater Chem B ; 11(16): 3484-3510, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2288921

ABSTRACT

Messenger RNA (mRNA) has become a key focus in the development of therapeutic agents, showing significant potential in preventing and treating a wide range of diseases. The COVID-19 pandemic in 2020 has accelerated the development of mRNA nucleic therapeutics and attracted significant investment from global biopharmaceutical companies. These therapeutics deliver genetic information into cells without altering the host genome, making them a promising treatment option. However, their clinical applications have been limited by issues such as instability, inefficient in vivo delivery, and low translational efficiency. Recent advances in molecular design and nanotechnology have helped overcome these challenges, and several mRNA formulations have demonstrated promising results in both animal and human testing against infectious diseases and cancer. This review provides an overview of the latest research progress in structural optimization strategies and delivery systems, and discusses key considerations for their future clinical use.


Subject(s)
COVID-19 , Pandemics , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Nanotechnology/methods , Drug Delivery Systems/methods
19.
Nat Mater ; 22(7): 818-831, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2288902

ABSTRACT

RNA-based therapeutics have shown tremendous promise in disease intervention at the genetic level, and some have been approved for clinical use, including the recent COVID-19 messenger RNA vaccines. The clinical success of RNA therapy is largely dependent on the use of chemical modification, ligand conjugation or non-viral nanoparticles to improve RNA stability and facilitate intracellular delivery. Unlike molecular-level or nanoscale approaches, macroscopic hydrogels are soft, water-swollen three-dimensional structures that possess remarkable features such as biodegradability, tunable physiochemical properties and injectability, and recently they have attracted enormous attention for use in RNA therapy. Specifically, hydrogels can be engineered to exert precise spatiotemporal control over the release of RNA therapeutics, potentially minimizing systemic toxicity and enhancing in vivo efficacy. This Review provides a comprehensive overview of hydrogel loading of RNAs and hydrogel design for controlled release, highlights their biomedical applications and offers our perspectives on the opportunities and challenges in this exciting field of RNA delivery.


Subject(s)
COVID-19 , Hydrogels , Humans , Hydrogels/chemistry , RNA , COVID-19/therapy , Drug Delivery Systems
20.
Mil Med Res ; 10(1): 9, 2023 02 27.
Article in English | MEDLINE | ID: covidwho-2288708

ABSTRACT

Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function. However, a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells. To be excited, the development of ionizable drug delivery systems (IDDSs) has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019 (COVID-19) in 2021. Compared with conventional cationic gene vectors, IDDSs can decrease the toxicity of carriers to cell membranes, and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures. Despite the progress, there remain necessary requirements for designing more efficient IDDSs for precise gene therapy. Herein, we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms. The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of pDNA and four kinds of RNA. In particular, organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity. We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future, and indicate ideas for developing next generation gene vectors.


Subject(s)
COVID-19 , Nucleic Acids , Humans , BNT162 Vaccine , COVID-19/therapy , Drug Delivery Systems , Genetic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL